91 research outputs found

    Astronomical Spectroscopy

    Full text link
    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous material by providing some examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and Stellar Systems, to be published in 2011 by Springer. Slightly revise

    UV-luminous, star-forming hosts of z similar to 2 reddened quasars in the Dark Energy Survey

    Get PDF
    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B − V)QSO ≳ 0.5; Lbol > 1046 erg s−1] broad-line quasars at 1.5 < z < 2.7. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near-infrared VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr−1, with an average SFRUV = 130 ± 95 M⊙ yr−1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation

    Mapping and simulating systematics due to spatially-varying observing conditions in DES Science Verification data

    Get PDF
    Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z)N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. The framework presented here is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope (LSST), which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky

    UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey

    Get PDF
    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)QSO_{\rm{QSO}}\gtrsim 0.5; Lbol>_{\rm{bol}}> 1046^{46}ergs1^{-1}) broad-line quasars at 1.5<z<2.71.5 < z < 2.7. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV_{\rm{UV}} < 365 M_{\odot}yr1^{-1}, with an average SFRUV_{\rm{UV}} = 130 ±\pm 95 M_{\odot}yr1^{-1}. We find a broad correlation between SFRUV_{\rm{UV}} and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation

    The DES Science Verification weak lensing shear catalogues

    Get PDF
    We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies, respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-yr DES, which is expected to cover 5000 square degrees

    Combining dark energy survey science verification data with near-infrared data from the ESO VISTA hemisphere survey

    Get PDF
    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near infrared data from the ESO VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint 7-band (grizYJKgrizYJK) photometric catalogues are produced in a single 3 sq-deg DECam field centred at 02h26m-04d36m where the availability of ancillary multi-wavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor of \sim4.5 relative to a simple catalogue level matching and results in a \sim1.5 mag increase in the 80\% completeness limit of the NIR data. Almost 70\% of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z1z1. We present example DES+VHS colour selection criteria for high redshift Luminous Red Galaxies (LRGs) at z0.7z\sim0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <<10\% contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5%<0.5\% contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS dataset, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.We thank the referee, Nicholas Cross, for a very useful report on this manuscript. MB acknowledges a postdoctoral fellowship via OL’s Advanced European Research Council Grant (TESTDE). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana- Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol ´ogico and the Minist´erio da Ciˆencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratories, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, the Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit ¨at and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Laboratory, Stanford University, the University of Sussex, and Texas A&M University. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2009-13936, AYA2012- 39559, AYA2012-39620, and FPA2012-39684, which include FEDER funds from the European Union. We are grateful for the extraordinary contributions of our CTIO colleagues and the DES Camera, Commissioning and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management organisation. The analysis presented here is based on observations obtained as part of the VISTA Hemisphere Survey, ESO Progam, 179.A- 2010 (PI: McMahon) and data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 179.A-2006 (PI: Jarvis). Data for the OzDES spectroscopic survey were obtained with the Anglo-Australian Telescope (program numbers 12B/11 and 13B/12). Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. TMD acknowledges the support of the Australian Research Council through Future Fellowship, FT100100595.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/446/3/2523.abstract

    Imprint of DES super-structures on the Cosmic Microwave Background

    Get PDF
    Small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshifts 0.2<z<0.650.2 < z < 0.65. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with ΔTf5.0±3.7 μK\Delta T_{f} \approx -5.0\pm3.7~\mu K and a hot imprint of superclusters ΔTf5.1±3.2 μK\Delta T_{f} \approx 5.1\pm3.2~\mu K ; this is 1.2σ\sim1.2\sigma higher than the expected ΔTf0.6 μK|\Delta T_{f}| \approx 0.6~\mu K imprint of such super-structures in Λ\LambdaCDM. If we instead use an a posteriori selected filter size (R/Rv=0.6R/R_{v}=0.6), we can find a temperature decrement as large as ΔTf9.8±4.7 μK\Delta T_{f} \approx -9.8\pm4.7~\mu K for voids, which is 2σ\sim2\sigma above Λ\LambdaCDM expectations and is comparable to previous measurements made using SDSS super-structure data

    Eight new luminous z = 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations

    Get PDF
    We present the discovery and spectroscopic confirmation with the ESO NTT and Gemini South telescopes of eight new 6.0 < z < 6.5 quasars with zAB_{AB} < 21.0. These quasars were photometrically selected without any star-galaxy morphological criteria from 1533 deg2^{2} using SED model fitting to photometric data from the Dark Energy Survey (g, r, i, z, Y), the VISTA Hemisphere Survey (J, H, K) and the Wide-Field Infrared Survey Explorer (W1, W2). The photometric data was fitted with a grid of quasar model SEDs with redshift dependent Lyman-{\alpha} forest absorption and a range of intrinsic reddening as well as a series of low mass cool star models. Candidates were ranked using on a SED-model based χ2\chi^{2}-statistic, which is extendable to other future imaging surveys (e.g. LSST, Euclid). Our spectral confirmation success rate is 100% without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants the method allows large data sets to be processed without human intervention and without being over run by spurious false candidates. We also present a robust parametric redshift estimating technique that gives comparable accuracy to MgII and CO based redshift estimators. We find two z \sim 6.2 quasars with HII near zone sizes < 3 proper Mpc which could indicate that these quasars may be young with ages < 106^6 - 107^7 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDESJ0224-4711 has JAB_{AB} = 19.75 is the second most luminous quasar known with z > 6.5

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore